Smoothed Estimating Equations for Instrumental Variables Quantile Regression
نویسندگان
چکیده
The moment conditions or estimating equations for instrumental variables quantile regression involves the discontinuous indicator function. We instead use smoothed estimating equations, with bandwidth h. This is known to allow higherorder expansions that justify bootstrap refinements for inference. Computation of the estimator also becomes simpler and more reliable, especially with (more) endogenous regressors. We show that the mean squared error of the vector of estimating equations is minimized for some h > 0, which also reduces the mean squared error of the parameter estimators. The same h also minimizes higher-order type I error for a χ test, leading to improved size-adjusted power. Our plug-in bandwidth consistently reproduces all of these properties in simulations.
منابع مشابه
Smoothed instrumental variables quantile regression, with estimation of quantile Euler equations∗
This paper develops theory for feasible estimation and testing of finite-dimensional parameters identified by general conditional quantile restrictions. This includes instrumental variables nonlinear quantile regression as a special case, under much weaker assumptions than previously seen in the literature. More specifically, we consider a set of unconditional moments implied by the conditional...
متن کاملSmoothed and Corrected Score Approach to Censored Quantile Regression With Measurement Errors
Censored quantile regression is an important alternative to the Cox proportional hazards model in survival analysis. In contrast to the usual central covariate effects, quantile regression can effectively characterize the covariate effects at different quantiles of the survival time. When covariates are measured with errors, it is known that naively treating mismeasured covariates as error-free...
متن کاملInference on the Instrumental Quantile Regression Process for Structural and Treatment Effect Models
We introduce a class of instrumental quantile regression methods for heterogeneous treatment effect models and simultaneous equations models with nonadditive errors and offer computable methods for estimation and inference. These methods can be used to evaluate the impact of endogenous variables or treatments on the entire distribution of outcomes. We describe an estimator of the instrumental v...
متن کاملSmoothed Empirical Likelihood Methods for Quantile Regression Models
This paper considers an empirical likelihood method to estimate the parameters of the quantile regression (QR) models and to construct confidence regions that are accurate in finite samples. To achieve the higher-order refinements, we smooth the estimating equations for the empirical likelihood. We show that the smoothed empirical likelihood (SEL) estimator is first-order asymptotically equival...
متن کاملInstrumental quantile regression inference for structural and treatment effect models
We introduce a class of instrumental quantile regression methods for heterogeneous treatment effect models and simultaneous equations models with nonadditive errors and offer computable methods for estimation and inference. These methods can be used to evaluate the impact of endogenous variables or treatments on the entire distribution of outcomes. We describe an estimator of the instrumental v...
متن کامل